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1 Introduction

This document describes a method for constructing
MIPAS microwindows considering a ‘multi-layer’ re-
trieval. As such, it represents a modification of the
scheme developed under contract 12054 which con-
structed microwindows assuming a ‘single-layer’ re-
trieval.

The operational requirement is for microwindows
which are usable over a range of tangent altitudes.
With microwindows defined using the single (tan-
gent) layer scheme, this requires an additional ‘con-
solidation’ step where microwindows optimised for
a particular tangent altitude are extended, non-
optimally, to cover other tangent altitudes. It is then
necessary to define an occupation matrix algorithm
to determine the combination of microwindows that
gives the required accuracy for the retrieved profile.

Using a multi-layer retrieval allows microwindows
boundaries to be optimised over all levels simultane-
ously, removing the consolidation step. It also allows
microwindows to be selected sequentially so that each
minimises the remaining profile retrieval error: the
appropriate occupation matrix for n microwindows is
then simply microwindows 1 ... n in the sequence. A
further advantage is the capability of including inter-
level correlations, both in the retrieval and in the
systematic errors, which can have a significant effect
on the apparent accuracy.

2 Theory

2.1 Contribution Function

Consider an existing estimate of a state vector (i.e.
profile) a of n elements, with covariance S,, obtained
from a set of m measurements y using a ‘Global Fit’
(GF) retrieval (Appendix A).
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It can be shown (Appendix C) that rerunning the
GF retrieval with an additional measurement y, vari-
ance 02, would modify the retrieval a — x:

x =dy + (I, — dk)a (1)

where k is the weighting function for y (y = ka) and
d is its contribution function:

d = S,k” (6* +kS,k”) ™ 2)

Note that this equivalent to the Optimal Estimation
(OE) contribution function, Eq. 24. This is only ‘op-
timal’ in the sense of combining the measurement y
with a previous estimate a weighted by their random
errors 02, S,, which are assumed uncorrelated. It is
no longer optimal if additional or correlated (between
y and a) sources of error are present. However, since
it is the weighting that will be used in the operational
Global Fit retrieval, Eq. (2) is the appropriate con-
tribution function to use in the total error analysis.

2.2 Error Covariances

Taking the covariance of Eq. (1) (see Appendix B)
the additional measurement will modify the random
error covariance S, — S;:

S, = (I, —dk)S, (3)
= S, —S.k7 (0 +kS,k7) kS, (4)

However, there will also be systematic (non-
random) error terms, e.g. due to underestimating a
contaminating species. Suppose a particular system-
atic error source i contributes a forward model error
dy’ to the measurement y. Since the previous esti-
mate a is based on m similar measurements, it will
also contain an error component da’ representing the
accumulation of forward model errors from the same
source. These two error terms are completely cor-
related, so Eq. 1 gives the resulting retrieval error
component Jx’:

oxt = ddy’ + (I,, — dk) da’ (5)



This error component will have a covariance S}:

St = E {(6x%)(0x")T} = (6x)(6x%)T (6)

Assuming that each of the error sources i is uncor-
related with the other error sources, the total error
covariance of the retrieval S, is then the sum of the
random and correlated error covariances:

2.3 Information Content

If the previous estimate is known with an accuracy
represented by the total error covariance matrix S,,
and after adding measurement y this is modified to

S, the information content H of the retrieval (i.e. of
the additional measurement) can be defined as:

H = —log, |85, ®)

where H is measured in bits. This properly accounts
for any off-diagonal elements in both covariance ma-
trices. For H > 0, the measurement has had a pos-
itive contribution. Note that if the retrieval were
performed ‘optimally’, allowing for all error terms in
the previous estimate and the measurement, together
with their correlations, the information content would
never be negative. However, since the operational re-
trieval only allows for random noise components, an
additional measurement can lead to H < 0 in which
case the measurement should be excluded.

For a single parameter retrieval this expression re-
duces to the ratio of the total variances, H > 0 being
equivalent to S, < S,, which is the test used in the
single-layer algorithm.

2.4 Updating

If a measurement is accepted as part of the retrieval
(i-e. contributes ‘positive’ information) the error com-
ponents are updated according to Egs. (3)—(7) and
then used to redefine the ‘previous estimate’ when
considering the next measurement:

(027 Sa) - Sw = Sal (9)
(6y',6a’) — 6x' = da’ (10)
(Sg,6x) =S, = S (11)

where ' denotes the new ‘previous estimate’ error
terms now incorporating m + 1 measurements.

2.5 Initialisation

It is not possible to perform a Global Fit retrieval
(Eq. 20) of n parameters (e.g. VMR at 16 levels) us-
ing m < n measurements. However, Eq. 1 can be ap-
plied even for m = 0 provided that an initial random

a priori covariance SO is defined, e.g. some large ‘cli-
matological’ uncertainty. This makes it possible to
define the information content of a single measure-
ment rather than have to preselect m = n measure-
ments before being able to calculate the contribution
of the n 4+ 1th measurement.

Effectively the algorithm starts off as an ‘Optimal
Estimation’ retrieval and, once a sufficient number
of measurements are included, converges towards a
‘Global Fit’ retrieval as the error covariance converges
to that of the measurements alone.

3 A Practical Scheme

3.1 A Prior: Covariance

The form chosen for the a priori covariance SY will
influence the selection sequence of the first few mi-
crowindows.

The suggestion is to initialise with large variances
at all altitudes, e.g. a diagonal matrix with variances
corresponding to a factor 100 uncertainty in the cli-
matological value. This should then lead to a ‘natu-
ral’ microwindow selection sequence where the max-
imum information is obtained over the whole profile.

An alternative is to select a small initial variance
in a certain altitude range. Any microwindows which
only retrieve in this altitude range will then appear to
contribute little additional information, so will not be
selected. This can be used to bias the selection away
from certain altitude ranges, e.g. if the ‘natural’ selec-
tion produces too many high altitude microwindows.

3.2 State Vector

The state vector x is represented by 25 elements con-
taining:

x1 — 216 Volume Mixing Ratio at 8, 11, ..., 53 km
17 — o4 Continuum at 8, 11, ..., 29 km.
95 Radiometric Offset

The continuum and offset terms are specific to each
microwindow, and assumed fully independent from
one microwindow to the next. Therefore the full state
vector need only represent these components for the
current microwindow. The full state vector is used to
calculate the total error covariances, but only VMR
elements (1-16) are used to test information content
since these are the output parameters.

3.3 Weighting Functions

The weighting functions k;; for the sensitivity of mea-
surement y; to the profile at tangent height j can be
calculated in one of three ways (in order of increasing
complexity):



1. Assume the measurement is only sensitive to the
atmosphere at the tangent point (k;; precom-
puted, k;; = 0if i # j)

2. Calculate sensitity to higher altitudes by scal-
ing tangent points values for those altitudes by
airmass (k” 0.8 kjj).

3. Calculate weighting functions k;; explicitly for
each measurement.

Values of k;;, k;; are obtained from the existing Jaco-
bian spectra (one per band, per tangent height, per
absorbing species). Option 3 would require an as-
sociated forward model to calculate k explicitly as
the microwindow construction proceeds since it is im-
practical to precalculate k;; for all 4, j for full spectra.

3.4 Error Sources

A separate error source is defined for:

e each contaminant profile
e temperature for each altitude

e pressure for each altitude

e gain for each microwindow

e HITRAN for each microwindow

e line position for each microwindow

The corresponding measurement errors dy’ are cal-
culated, as in the single-layer scheme, using the ex-
isting jacobian spectra. These are combined with the
stored previous estimate errors da’ using Eq. (5), to
produce retrieval errors dx* which are then converted
into to covariances S¢ (Eq. 6) for the information con-
tent analysis. If the measurement is to be included in
the microwindow, the updated error vectors are saved
5xi — da’, otherwise the previous error vectors da’
are kept.

3.5 MW-Specific Errors

When each microwindow is completed, it is assumed
that microwindow-specific error sources (e.g. gain er-
ror) will not be correlated with any further measure-
ments. Rather than continue to maintain separate
error vectors 6x¢ for these components, it may be
computationally more convenient to combine these
into an uncorrelated component of a priori covariance
S for the start of the next microwindow. This will
then map into subsequent retrievals in the same way
as the random uncorrelated error S, (Eq. 3), giving
a modified version of Eq. (7):

S; =S, +Sy+) Si (12)

where

S* = (I, — dk)S¥(I,, — dk)” (13)

Note that it is necessary to maintain S¥ and S, sep-
arately since only S, is used to determine the contri-
bution function (Eq. 2).

3.6 Starting Point

Every possible measurement (10° spectral grid points
x 16 altitudes) is assessed for its information contri-
bution. However, simply taking the point with the
‘highest’ information content as a starting point for
defining a microwindow may lead to high-priority mi-
crowindows which are in fact very limited in altitude
and spectral coverage. A better approach might be to
define some sort of averaging function to determine
the region (both spectral and altitude) containing the
greatest concentration of high-information points.

One such function could be to sum positive val-
ues of H over all altitudes for a particular grid point,
then applying a triangular filter in the spectral do-
main (full width=3cm!). The microwindow selec-
tion would then start from the spectral grid point at
which this function was maximised.

3.7 Procedure

The suggested procedure for construction of MWs is
as follows.

0. Initialise with suitable a priori covariance (§ 3.1).

1. Survey the entire spectrum to determine grid
point with maximum information contribution
over all altitudes (§ 3.6).

2. For a spectral grid point, evaluating information
contribution tangent height by tangent height,
setting masks for negative or negligible contri-
butions.

3. Move to adjacent grid point and repeat from
2. Continue until either the additional grid
point has no contribution at any altitudes or the
3 cm ! maximum allowed width is reached.

4. A microwindow is now fully defined. Use the
total covariance for this microwindow as the a
priori and repeat from 1 for the next microwin-
dow. Continue until retrieval covariance profile
reaches desired value at all altitudes.

This need not be restricted to a single sequence of mi-
crowindows. A different set of microwindows would
result if the first microwindow was constructed about
the grid point with, say, the second highest informa-
tion content. This would give an alternative sequence
of microwindows in case there were a reason for ex-
cluding the first sequence.



4 Conclusion

Two basic ideas have been suggested for improving
the MW database selection: the use of a multi-layer
retrieval and the analysis of information content. The
multi-layer retrieval avoids the necessity of a consoli-
dation step, while the information content leads to a
systematic method both for constructing individual
microwindows and sequences of microwindows. The
advantage of using both concepts together is that the
inter-layer error correlations are also correctly mod-
elled.

A Global Fit

The ‘Global Fit’ (GF) retrieval is a weighted least-
squares fit which determines the state vector x of
n elements, which fits a set of m measurements y
so as to minimise a cost-function .J (actually the x?2
statistic):

J=(y-Kx)"S, ‘y-Kx)  (14)
where K is the matrix of weighting functions: K;; =
0yi/0x;. This has the solution:

x = (K's,'K)"K7S,ly  (15)
= D% (16)
where D¢ is the GF contribution function
D¢ = (K”s, 'K) ' K’S,”! (17)
Taking the covariance of Eq. 16 gives:
S, = D9, DC" (18)

A convenient simplification (for the algebra) is to
assume that the measurement covariance matrix S, is
diagonal and of constant amplitude 2, so that S, =
021,,. In this case the contribution function, retrieval
and covariance reduce to:

D¢ = (K"K) K7 (19)
x = D% = (K'K)" KTy (20)
S, = D%1,D% =% (KTK) ' (21)

As in any unconstrained least-squares fit, it is nec-
essary (but not sufficient) for there to be at least as
many measurements m in vector y as there are re-
trieved quantities n in vector x in order that the ma-
trix inversion can be performed.

B Optimal Estimation

An ‘Optimal Estimation’ (OE) retrieval determines
the state vector which best fits both a set of mea-
surements and an a priori constraint (vector a, co-
variance S,, of same dimensions as x, S;), achieved
by the minimisation of a modified cost-function:

J = (y—-Kx)'S, '(y —Kx)
+(a-x)Ts,(a—-x) (22)
Implicit in the form of the cost-function (separated
covariance matrices) is that the measurement errors
and the a priori errors are uncorrelated with each
other. This has the solution:

x =a+S,K” (KS,K” +8,)” (y —Ka) (23)
Defining an OE contribution function D:
D =S,K” (KS,K” +8,) ' (24)
the retrieval can be expressed as:
x = a+D(y—-Ka) (25)
= Dy+ (I, - DK)a (26)

Taking the covariance of Eq. 26, again assuming no
cross-correlation between the errors in vectors y and
a, gives the covariance of the solution associated with
optimal estimation:

S, DS, D’ + (I, — DK)S, (I, — DK)(27)
= D(S, +KS,K")D”

-DKS, - S,K'DT + 8,
= DKS, - DKS, - DKS, + S,

(28)
(29)
= (In - DK) Sa (30)
(31)

C Contribution Function

This demonstrates that the Optimal Estimation
equation is the appropriate form to use when updat-
ing a Global Fit retrieval with an additional measure-
ment (as assumed in Eq. 1).

Assuming the simplified variance forms (Egs. 20,
21), let the GF retrieval using a set of m measure-
ments give a state vector a and covariance S,:

a =

Sa

(K'K) 'Ky
= 2 (K'K)"

(32)
(33)

Suppose now the retrieval is repeated with an ad-
ditional independent measurement y, with (vector)



weighting function k. Modifying the GF equation for
m + 1 measurements, the new solution x is given by:

x = (KTK+k7k) ' (KTy+kTy)  (34)
= a+ (KTK+k"k) " (k7y —k"ka) (35)
= a+8, (c’L, +k"kS,) ' k”(y — ka)(36)
= a+S.k” (0 +kS,k7) ' (y —ka) (37)

where the last step follows from considering the al-
ternative factorisations of o2k” + k7kS k”:

k7 (0? + kS, kT) = (¢°I, + k'kS, kT (38)
(0?1, + kTkS,) kT = kT (02 + kS, k7)1 (39)

Comparing Eq. (37) to Eq. (23), it can be seen
that this is just the optimal estimation equation for
a single measurement, with the GF solution for m
measurements acting as the a priori.



