

Retrieval of SF₆ from the MIPAS Satellite Instrument

A. Burgess, A. Dudhia, R. Grainger, V. Payne

Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Oxford, UK ourgess@atm.ox.ac.u

ABSTRACT

Preliminary work on retrieving sulphur hexafluoride (SF₆) from the MIPAS satellite instrument is presented here. Useful accuracy can be obtained over the altitude range 6-21 km, increasing to approximately 30 km when multiple scans are considered. Tropospheric values are in agreement with accepted trends.

INTRODUCTION

The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) is one of the core experiments on ENVISAT, launched 1st March 20021. MIPAS measures limb emission spectra over the altitude range 6-68 km. From these measurements, profiles of atmospheric temperature and composition can be retrieved.

The primary MIPAS operational products are temperature, O₃, H₂O, CH₄, N₂O, HNO₃ and NO₂ However, it is possible to retrieve many other trace gases from MIPAS data, in part due to its high spectral resolution.

Global measurements of SF₆ are important because of its strong greenhouse properties2, many thousand times more powerful than CO2. In addition, SF_6 is a long-lived species useful as a tracer3. As such, it can be used for understanding atmospheric dynamics and for testing the accuracies of transport models.

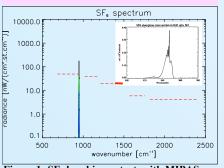


Figure 1: SF₆ band in context, with MIPAS NESR in red. Inset shows lab measurement of the strong $__3$ band² of SF₆.

MICROWINDOW SELECTION

In order to efficiently use the data from high resolution instruments, such as MIPAS, sections of spectrum, "migrorited ows" (MW), are selected to give the most inf to minimise both the random and systematic error components of the retrieval. The microwindow selection process models the propagation of random and systemat e altitude range of interest.

and geolocation are inset.

COADDITION OF PROFILES

As the retrieved profiles have a high random error due to the low signal strength, it was decided to investigate co-addition of retrieved profiles. Figure 4 shows the results of the retrieval, from 6-30 km and above to show how accuracy falls away. There is an awareness of the need to carefully propagate errors though this procedure and also account for the inclusion of a priori data in each profile.

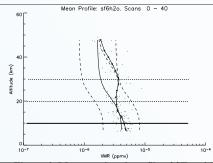


Figure 4: Mean retrieved profile of SF₆, with points from the constituent profiles over plotted. Lines indicate high, medium and no confidence.

CONFIRMING TRENDS

The concentration of sulphur hexafluoride has been rapidly increasing since the 1960s, due to anthropogenic emission. The mean retrieved tropospheric VMR of ~4 ppbv is in excellent agreement with published values and trends4,5. The uncertainty is currently estimated as less than +/- 1ppbv, and is expected to improve further.

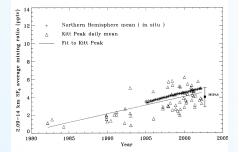


Figure 5: Recent published data⁴ from ground-based and flask measurements, with the tropospheric MIPAS result over plotted.

CONCLUSIONS

· With the microwindows selected here, we can retrieve SF₆ with reasonable accuracy over the altitude range 6-21 km and up to 30 km.

· The random error is the biggest contribution

to the total error at all altitudes for single

· Further work is to use statistical approaches to combine scans

References

- 1. ENVISAT-1 Mission and System Summary, ESA/SP-1229
- ESA/ESTEC Envisat MIPAS An instrument for atmosph research. ESA Bulletin 101, ISSN 0276-4265
- Ko, M. Sze, N., et. al., Atmospheric sulfur hexafluor warming. Journal of Geophysical Research, 98:1049 2.
- Patrfa, P., Lal, S., Subbaraya, B., et. al., Observed vertical profile of st (SF6) and its atmospheric applications. *Journal of Geophysical Resear* 102:8855-8859, 1997
- Rinsland, C., Goldman, A., Stephen, T. Chiou, L., Mahieu, E. and Zander, R., SF6 group based infrared solar absorption measurements: long-term trend, pollution events and a search for SFSCF2 absorption, *Journal of Quantitative Spectroscopy and Radiative Transfer*, 78:41-53, 2005
- Rinsland, C. et. al., ATMOS/ATLAS-1 measurements of sulfur hexafluoride (SF6) in the lower stratosphere and upper troposphere, *Journal of Geophysical Research Atmospheres*, 98:20491-20494, 1993

ESTIMATED RETRIEVAL RANGE The MW error analysis is shown in Figure 2. It

indicates that we can retrieve SF6 over the altitude range 6-21 km with some confidence. Above 30 km, the random errors become so high that the retrieval is no longer reliable. Indeed, visual inspection of co-added spectra shows no discernable spectral feature above 35 km.

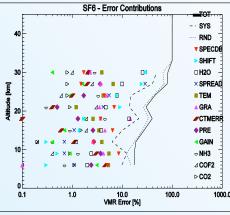
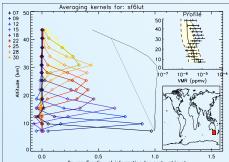



Figure 2: Error analysis for SF₆ microwindows. Water retrieval is the dominant systematic source above 20 km, spectroscopic uncertainty below.

RETRIEVAL RESULTS

The University of Oxford retrieval code, OPTIMO, uses an iterative fit with a priori constraints (optimal estimation) to invert MIPAS spectra. Retrieval diagnostics, such as the ² test along with cloud detection and compensation are also made use of.

retrieval range attempted. The resulting profile